85 research outputs found

    Heating Position Planning in Laser Forming of Single Curved Shapes Based on Probability Convergence

    Get PDF
    Inverse problem in laser forming involves the heating position planning and the determination of heating parameters. In this study, the heating positions are optimized in laser forming of single curved shapes based on the processing efficiency. The algorithm uses a probability function to initialize the heating position that is considered to be the bending points. The optimization process is to minimize the total processing time through adjusting the heating positions by considering the boundary conditions of the offset distances, the minimum bending angle, and the minimum distance between two adjacent heating positions. The optimized results are compared with those obtained by the distance-based model as well as the experimental data

    Portland Cement Hydration Behavior at Low Temperatures: Views from Calculation and Experimental Study

    Get PDF
    Environmental condition affects the property of construction materials. This study gives an initial understanding of Portland cement hydration under low temperatures from the views of laboratory experiments (including electrical resistivity, degree of hydration (DoH), and maturity) as well as thermodynamic calculation. The hydrates of Portland cement at the given period were detected with X-ray diffraction (XRD), and their microstructure was observed by scanning electron microscope (SEM). Experiment result (i.e., DoH and electrical resistivity) indicated that the hydration of Portland cement was delayed by low temperature without hydration stopping at −5°C. Based on a basic kinetics model, the thermodynamic calculation predicted that the final hydrate differs in dependence on environmental temperatures. The mechanical behavior trend of Portland cement paste affected by low temperatures potentially is linked to the appearing of aluminate compounds and reduction of portlandite

    Geochronology, geochemistry, and tectonic significance of the Shirenshan gneiss in the southern margin of the North China Block

    Get PDF
    The Shirenshan Block is a complex geological body located in the southern margin of the North China Block (NCB). From south to north, it can be divided into the Taihua Group migmatite, and the Shirenshan gneiss and magmatic rocks. The petrographic features, tectonic setting, provenance, and geological age of the Shirenshan gneiss using comprehensive field investigations, microstructural analysis, zircon U-Pb radioactive dating, and geochemical analyses were investigated for this study. The petrology, geochemistry, and geochronology of the Shirenshan gneiss suggests that it is mainly a felsic rock and its protolith was a high-K calc-alkaline series A-type granite. The protolith is high in SiO2, Al2O3, K2O, Na2O, and low in CaO and MgO. Overall, the Sr-Nd isotope composition of the samples showed no significant difference, indicating that the Taihua Group migmatite and the Shirenshan gneiss have the same source material. The Shirenshan block may be partially melted from the Taihua group and formed during activity of the Luo-Luan Fault. By the method of zircon dating analysis, the protolith age of the Shirenshan block was determined as 1559±16Ma (Early Proterozoic). Then, the crystallization age of the syntectonic migmatite is 439.2±7.6Ma, which was formed by subduction of the Taihua Group. During the early Cretaceous (119.5±1.3Ma), the Shirenshan gneiss may have experienced regional migmatization and formed the zircon rims age of the Yanshanian period. Litho-geochemical features of the Shirenshan block are similar to A1-type granites indicating that they are post-orogenic. Therefore, the metamorphic deformation of the Shirenshan gneiss reflects the tectonics in the southern margin of the NCB.</p

    Initial demonstration of AlGaAs-GaAsP-beta-Ga2O3 n-p-n double heterojunctions

    Full text link
    Beta phase gallium oxides, an ultrawide-bandgap semiconductor, has great potential for future power and RF electronics applications but faces challenges in bipolar device applications due to the lack of p-type dopants. In this work, we demonstrate monocrystalline AlGaAs_GaAsP_beta phase gallium oxides n-p-n double-heterojunctions, synthesized using semiconductor grafting technology. By transfer printing an n-AlGaAs_p-GaAsP nanomembrane to the n-beta phase-Ga2_2O3_3 epitaxial substrate, we simultaneously achieved AlGaAs_GaAsP epitaxial n-p junction diode with an ideality factor of 1.29 and a rectification ratio of 2.57E3 at +/- 2 V, and grafted GaAsP_beta_phase_gallium oxides p-n junction diode exhibiting an ideality factor of 1.36 and a rectification ratio of 4.85E2 at +/- 2 V.Comment: 12 pages, 4 figure

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential

    Get PDF
    BACKGROUND: The acceptance of microarray technology in regulatory decision-making is being challenged by the existence of various platforms and data analysis methods. A recent report (E. Marshall, Science, 306, 630–631, 2004), by extensively citing the study of Tan et al. (Nucleic Acids Res., 31, 5676–5684, 2003), portrays a disturbingly negative picture of the cross-platform comparability, and, hence, the reliability of microarray technology. RESULTS: We reanalyzed Tan's dataset and found that the intra-platform consistency was low, indicating a problem in experimental procedures from which the dataset was generated. Furthermore, by using three gene selection methods (i.e., p-value ranking, fold-change ranking, and Significance Analysis of Microarrays (SAM)) on the same dataset we found that p-value ranking (the method emphasized by Tan et al.) results in much lower cross-platform concordance compared to fold-change ranking or SAM. Therefore, the low cross-platform concordance reported in Tan's study appears to be mainly due to a combination of low intra-platform consistency and a poor choice of data analysis procedures, instead of inherent technical differences among different platforms, as suggested by Tan et al. and Marshall. CONCLUSION: Our results illustrate the importance of establishing calibrated RNA samples and reference datasets to objectively assess the performance of different microarray platforms and the proficiency of individual laboratories as well as the merits of various data analysis procedures. Thus, we are progressively coordinating the MAQC project, a community-wide effort for microarray quality control

    Microarray scanner calibration curves: characteristics and implications

    Get PDF
    BACKGROUND: Microarray-based measurement of mRNA abundance assumes a linear relationship between the fluorescence intensity and the dye concentration. In reality, however, the calibration curve can be nonlinear. RESULTS: By scanning a microarray scanner calibration slide containing known concentrations of fluorescent dyes under 18 PMT gains, we were able to evaluate the differences in calibration characteristics of Cy5 and Cy3. First, the calibration curve for the same dye under the same PMT gain is nonlinear at both the high and low intensity ends. Second, the degree of nonlinearity of the calibration curve depends on the PMT gain. Third, the two PMTs (for Cy5 and Cy3) behave differently even under the same gain. Fourth, the background intensity for the Cy3 channel is higher than that for the Cy5 channel. The impact of such characteristics on the accuracy and reproducibility of measured mRNA abundance and the calculated ratios was demonstrated. Combined with simulation results, we provided explanations to the existence of ratio underestimation, intensity-dependence of ratio bias, and anti-correlation of ratios in dye-swap replicates. We further demonstrated that although Lowess normalization effectively eliminates the intensity-dependence of ratio bias, the systematic deviation from true ratios largely remained. A method of calculating ratios based on concentrations estimated from the calibration curves was proposed for correcting ratio bias. CONCLUSION: It is preferable to scan microarray slides at fixed, optimal gain settings under which the linearity between concentration and intensity is maximized. Although normalization methods improve reproducibility of microarray measurements, they appear less effective in improving accuracy
    • 

    corecore